From: Peter Schwabe <peter@cryptojedi.org> via pgc-forum@list.nist.gov
To: pgc-forum <pgc-forum@list.nist.gov>

cc: authors@pq-crystals.org

Subject: [pgc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Saturday, December 03, 2022 08:04:13 PM ET

Dear all,

This e-mail is a follow-up to our presentation at the 4th NIST PQC
standarization workshop and one of two mails meant to continue and
eventually conclude discussions towards the standardization of Kyber.
Several questions, possible tweaks, and ideas have been proposed by
members of the team, by researchers and future users from the community,
and by NIST. The discussion about the standardization of Kyber-512 has
already been covered in the mail by Dustin from November 30. The
remaining discussions fall roughly into two categories, hence two e-mail
threads. Part 1 (this e-mail) is about the choice of symmetric

primitives in Kyber.

As a reminder, round-3 Kyber uses multiple algorithms from the Keccak
family (FIPS202). Domain separation is achieved partially by using
different functions (SHAKE-128, SHAKE-256, SHA3-256, and SHA3-512) and
partially by input length. Performance of software implementations of
Kyber is currently bottlenecked by Keccak permutations; in order to
showcase the possible performance of Kyber with hardware support for
symmetric primitives, we also described a "90s" variant based on AES and

SHA2.

We have received several questions along the lines of "What about Kyber
with X instead of Keccak?" (typically with X taking values from the 90s
variant or possibly allowing users of Kyber to choose any symmetric
crypto they fancy). The team feels that having multiple incompatible
versions of Kyber is not desirable and the obvious choice is to stick to
Keccak as the sole underlying symmetric primitive. However, we continue
to be interested in hearing opinions and feedback about this. Also, even
when fixing Keccak as underlying symmetric primitives, there are still

two open questions:

Page 1 of 2

mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:authors@pq-crystals.org

Peter Schwabe <peter@cryptojedi.org>

1.) Should Kyber continue to use different functions from the FIPS202
standard and rely on the internal domain separation of those
functions or use just cSHAKE or KMAC from NIST SP-800-185 with
explicit domain separation? The advantage of such a change is that
fewer Keccak-based functions would be used and that analysis of
domain separation would be easier. The disadvantage is that one
either needs additional Keccak permutations to process domain
separation or needs to store pre-computed Keccak states (after

absorbing domain separation), one per domain-separated function.

2.) Should the generation of the public matrix A use a 12-round version
of Keccak ("TurboSHAKE") instead of the standard 24-round version.
This was proposed by the Keccak team and speeds up one of the most
costly subroutines of Kyber by a factor of 2. All properties one
would expect from a hash function are achieved by Keccak with 12
rounds (by a comfortable margin!). Also, the requirements on the
output of this function are rather weak; informally it should look
uniformly random and not interact in weird ways with the lattice
problems. The main disadvantage of moving to a 12-round version of
Keccak is that it requires phrasing the function in terms of
lower-level functions of FIPS202 instead of simply using one of the
SHA3/SHAKE functions.

We're looking forward to hearing what everybody thinks!

All the best,

The Kyber team

You received this message because you are subscribed to the Google Groups "pqc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to
pgc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/
msgid/pqgc-forum/Y4vx7fyh/DWcjGrv%40disp3269.

Page 2 of 2

From: John Mattsson <john.mattsson@ericsson.com> via pqc-forum <pgc-forum@list.nist.gov>
To: Peter Schwabe <peter@cryptojedi.org>, pqc-forum <pgc-forum@list.nist.gov>

cc: authors@pq-crystals.org

Subject: Re:[pqgc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Sunday, December 04, 2022 08:18:54 AM ET

Hi,

1) Using cSHAKE/KMAC seems nice, but | don't know the details of how it affects implementation
complexity/performance. | trust NIST/the authors to make right choices.

2) Yes. | think it is a good idea to use a 12-round version of Keccak ("TurboSHAKE"). As stated,
TurboSHAKE seems to be a cryptographically secure hash function with a good margin. | don't see any
problems using it for the Kyber XOF which have lower requirements. | don't think phrasing Kyber in
terms of Keccak is a disadvantage. | think is it essential that implementations support lower-level
functions like Keccac-p and the AES round function. FIPS 202 clearly states that other KECCAK-p
permutations may be specified in the future. Any implementation not adhering to this have themself
to blame. Kyber will likely be with us for many decades, optimize for the future, not HW already on the
market.

Cheers,

John

From: pqgc-forum@list.nist.gov <pqc-forum@list.nist.gov> on behalf of Peter Schwabe
<peter@cryptojedi.org>

Date: Sunday, 4 December 2022 at 02:04

To: pgc-forum <pqgc-forum@list.nist.gov>

Cc: authors@pqg-crystals.org <authors@pg-crystals.org>

Subject: [pqc-forum] Kyber decisions, part 1: Symmetric crypto

Dear all,

This e-mail is a follow-up to our presentation at the 4th NIST PQC

standarization workshop and one of two mails meant to continue and
eventually conclude discussions towards the standardization of Kyber.
Several questions, possible tweaks, and ideas have been proposed by

members of the team, by researchers and future users from the community,

Page 1 of 3

mailto:john.mattsson@ericsson.com
mailto:pqc-forum@list.nist.gov
mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov
mailto:authors@pq-crystals.org

John Mattsson <john.mattsson@ericsson.com>

and by NIST. The discussion about the standardization of Kyber-512 has
already been covered in the mail by Dustin from November 30. The
remaining discussions fall roughly into two categories, hence two e-mail
threads. Part 1 (this e-mail) is about the choice of symmetric

primitives in Kyber.

As a reminder, round-3 Kyber uses multiple algorithms from the Keccak
family (FIPS202). Domain separation is achieved partially by using
different functions (SHAKE-128, SHAKE-256, SHA3-256, and SHA3-512) and
partially by input length. Performance of software implementations of
Kyber is currently bottlenecked by Keccak permutations; in order to
showcase the possible performance of Kyber with hardware support for
symmetric primitives, we also described a "90s" variant based on AES and
SHA2.

We have received several questions along the lines of "What about Kyber
with X instead of Keccak?" (typically with X taking values from the 90s
variant or possibly allowing users of Kyber to choose any symmetric
crypto they fancy). The team feels that having multiple incompatible
versions of Kyber is not desirable and the obvious choice is to stick to
Keccak as the sole underlying symmetric primitive. However, we continue
to be interested in hearing opinions and feedback about this. Also, even
when fixing Keccak as underlying symmetric primitives, there are still

two open questions:

1.) Should Kyber continue to use different functions from the FIPS202
standard and rely on the internal domain separation of those
functions or use just cSHAKE or KMAC from NIST SP-800-185 with
explicit domain separation? The advantage of such a change is that
fewer Keccak-based functions would be used and that analysis of
domain separation would be easier. The disadvantage is that one
either needs additional Keccak permutations to process domain
separation or needs to store pre-computed Keccak states (after

absorbing domain separation), one per domain-separated function.

2.) Should the generation of the public matrix A use a 12-round version
of Keccak ("TurboSHAKE") instead of the standard 24-round version.

Page 2 of 3

John Mattsson <john.mattsson@ericsson.com>

This was proposed by the Keccak team and speeds up one of the most
costly subroutines of Kyber by a factor of 2. All properties one

would expect from a hash function are achieved by Keccak with 12
rounds (by a comfortable margin!). Also, the requirements on the
output of this function are rather weak; informally it should look
uniformly random and not interact in weird ways with the lattice
problems. The main disadvantage of moving to a 12-round version of
Keccak is that it requires phrasing the function in terms of

lower-level functions of FIPS202 instead of simply using one of the
SHA3/SHAKE functions.

We're looking forward to hearing what everybody thinks!

All the best,

The Kyber team

You received this message because you are subscribed to the Google Groups "pgc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe®@list.nist.gov.

To view this discussion on the web visit https://protect2.fireeye.com/v1/url?
k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&qg=1&e=ac8cfal7-34b0-4bb7-
bb91-
d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqgc-
forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269.

Page 3 of 3

https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fprotect2.fireeye.com%2Fv1%2Furl%3Fk%3D31323334-501d5122-313273af-454445555731-23f1e0775bec839e%26q%3D1%26e%3Dac8cfa17-34b0-4bb7-bb91-d4d4469c80a4%26u%3Dhttps%253A%252F%252Fgroups.google.com%252Fa%252Flist.nist.gov%252Fd%252Fmsgid%252Fpqc-forum%252FY4vx7fyh%252FDWcjGrv%252540disp3269&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Ca942928fe12f4ee4f60508dad5fa1587%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638057567347035797%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xGorkRwngKjIuUAjuKCP%2F3j3M0eqwk0y71y7Ce0qyPU%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fprotect2.fireeye.com%2Fv1%2Furl%3Fk%3D31323334-501d5122-313273af-454445555731-23f1e0775bec839e%26q%3D1%26e%3Dac8cfa17-34b0-4bb7-bb91-d4d4469c80a4%26u%3Dhttps%253A%252F%252Fgroups.google.com%252Fa%252Flist.nist.gov%252Fd%252Fmsgid%252Fpqc-forum%252FY4vx7fyh%252FDWcjGrv%252540disp3269&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Ca942928fe12f4ee4f60508dad5fa1587%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638057567347035797%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xGorkRwngKjIuUAjuKCP%2F3j3M0eqwk0y71y7Ce0qyPU%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fprotect2.fireeye.com%2Fv1%2Furl%3Fk%3D31323334-501d5122-313273af-454445555731-23f1e0775bec839e%26q%3D1%26e%3Dac8cfa17-34b0-4bb7-bb91-d4d4469c80a4%26u%3Dhttps%253A%252F%252Fgroups.google.com%252Fa%252Flist.nist.gov%252Fd%252Fmsgid%252Fpqc-forum%252FY4vx7fyh%252FDWcjGrv%252540disp3269&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Ca942928fe12f4ee4f60508dad5fa1587%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638057567347035797%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xGorkRwngKjIuUAjuKCP%2F3j3M0eqwk0y71y7Ce0qyPU%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fprotect2.fireeye.com%2Fv1%2Furl%3Fk%3D31323334-501d5122-313273af-454445555731-23f1e0775bec839e%26q%3D1%26e%3Dac8cfa17-34b0-4bb7-bb91-d4d4469c80a4%26u%3Dhttps%253A%252F%252Fgroups.google.com%252Fa%252Flist.nist.gov%252Fd%252Fmsgid%252Fpqc-forum%252FY4vx7fyh%252FDWcjGrv%252540disp3269&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Ca942928fe12f4ee4f60508dad5fa1587%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638057567347035797%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xGorkRwngKjIuUAjuKCP%2F3j3M0eqwk0y71y7Ce0qyPU%3D&reserved=0
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fprotect2.fireeye.com%2Fv1%2Furl%3Fk%3D31323334-501d5122-313273af-454445555731-23f1e0775bec839e%26q%3D1%26e%3Dac8cfa17-34b0-4bb7-bb91-d4d4469c80a4%26u%3Dhttps%253A%252F%252Fgroups.google.com%252Fa%252Flist.nist.gov%252Fd%252Fmsgid%252Fpqc-forum%252FY4vx7fyh%252FDWcjGrv%252540disp3269&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Ca942928fe12f4ee4f60508dad5fa1587%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638057567347035797%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=xGorkRwngKjIuUAjuKCP%2F3j3M0eqwk0y71y7Ce0qyPU%3D&reserved=0

From: Blumenthal, Uri - 0553 - MITLL <uri@ll.mit.edu> via pgc-forum®@list.nist.gov

To: John Mattsson <john.mattsson@ericsson.com>, Peter Schwabe <peter@cryptojedi.org>,
pqc-forum <pqc-forum@list.nist.gov>

Subject: Re: [pqc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Sunday, December 04, 2022 09:46:57 AM ET

Attachments: smime.p7m

Both of these proposals make sense. However, I'd like to underscore the importance of:

1. Kyber uses one PRF, not a bunch (perhaps, with one exception for matrix expansion);
and

2. Whatever PRF it uses - is a NIST standard.
I'd love to see TurboSHAKE there - assuming NIST makes it a standard.
Thanks!

P.S. If that NIST-blessed PRF turns out to be SHA2-based, not SHA-3, I'll welcome that, as it
seems that the world-wide PKI is stuck with SHA-2 for foreseeable future - thus all the PK-
related crypto will have to support it no matter what.

P.P.S. If the world decides that one standard secure hash family is enough, and deprecates
either one of the two (I don't particularly care which one), it would be great. Of course, | doubt
I'd see it, but one is allowed to hope... ;-)

V/R,

Uri

There are two ways to design a system. One is to make it so simple there are obviously no deficiencies.
The other is to make it so complex there are no obvious deficiencies.

-C. A. R Hoare

From: 'John Mattsson' via pgc-forum
Reply-To: John Mattsson

Date: Sunday, December 4, 2022 at 08:18
To: Peter Schwabe , pgc-forum

Page 1 of 5

mailto:uri@ll.mit.edu
mailto:pqc-forum@list.nist.gov
mailto:john.mattsson@ericsson.com
mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov

Both of these proposals make sense. However, I’d like to underscore the importance of:

			Kyber uses one PRF, not a bunch (perhaps, with one exception for matrix expansion); and

			Whatever PRF it uses – is a NIST standard.

I’d love to see TurboSHAKE there – assuming NIST makes it a standard.

Thanks!

P.S. If that NIST-blessed PRF turns out to be SHA2-based, not SHA-3, I’ll welcome that, as it seems that the world-wide PKI is stuck with SHA-2 for foreseeable future – thus all the PK-related crypto will have to support it no matter what.

P.P.S. If the world decides that one standard secure hash family is enough, and deprecates either one of the two (I don’t particularly care which one), it would be great. Of course, I doubt I’d see it, but one is allowed to hope… ;-)

--

V/R,

Uri

There are two ways to design a system. One is to make it so simple there are obviously no deficiencies.

The other is to make it so complex there are no obvious deficiencies.

 - C. A. R. Hoare

From: 'John Mattsson' via pqc-forum <pqc-forum@list.nist.gov>
Reply-To: John Mattsson <john.mattsson@ericsson.com>
Date: Sunday, December 4, 2022 at 08:18
To: Peter Schwabe <peter@cryptojedi.org>, pqc-forum <pqc-forum@list.nist.gov>
Cc: "authors@pq-crystals.org" <authors@pq-crystals.org>
Subject: Re: [pqc-forum] Kyber decisions, part 1: Symmetric crypto

Hi,

1) Using cSHAKE/KMAC seems nice, but I don't know the details of how it affects implementation complexity/performance. I trust NIST/the authors to make right choices.

2) Yes. I think it is a good idea to use a 12-round version of Keccak ("TurboSHAKE") . As stated, TurboSHAKE seems to be a cryptographically secure hash function with a good margin. I don't see any problems using it for the Kyber XOF which have lower requirements. I don't think phrasing Kyber in terms of Keccak is a disadvantage. I think is it essential that implementations support lower-level functions like Keccac-p and the AES round function. FIPS 202 clearly states that other KECCAK-p permutations may be specified in the future. Any implementation not adhering to this have themself to blame. Kyber will likely be with us for many decades, optimize for the future, not HW already on the market.

Cheers,

John

From: pqc-forum@list.nist.gov <pqc-forum@list.nist.gov> on behalf of Peter Schwabe <peter@cryptojedi.org>
Date: Sunday, 4 December 2022 at 02:04
To: pqc-forum <pqc-forum@list.nist.gov>
Cc: authors@pq-crystals.org <authors@pq-crystals.org>
Subject: [pqc-forum] Kyber decisions, part 1: Symmetric crypto

Dear all,

This e-mail is a follow-up to our presentation at the 4th NIST PQC
standarization workshop and one of two mails meant to continue and
eventually conclude discussions towards the standardization of Kyber.
Several questions, possible tweaks, and ideas have been proposed by
members of the team, by researchers and future users from the community,
and by NIST. The discussion about the standardization of Kyber-512 has
already been covered in the mail by Dustin from November 30. The
remaining discussions fall roughly into two categories, hence two e-mail
threads. Part 1 (this e-mail) is about the choice of symmetric
primitives in Kyber.

As a reminder, round-3 Kyber uses multiple algorithms from the Keccak
family (FIPS202). Domain separation is achieved partially by using
different functions (SHAKE-128, SHAKE-256, SHA3-256, and SHA3-512) and
partially by input length. Performance of software implementations of
Kyber is currently bottlenecked by Keccak permutations; in order to
showcase the possible performance of Kyber with hardware support for
symmetric primitives, we also described a "90s" variant based on AES and
SHA2.

We have received several questions along the lines of "What about Kyber
with X instead of Keccak?" (typically with X taking values from the 90s
variant or possibly allowing users of Kyber to choose any symmetric
crypto they fancy). The team feels that having multiple incompatible
versions of Kyber is not desirable and the obvious choice is to stick to
Keccak as the sole underlying symmetric primitive. However, we continue
to be interested in hearing opinions and feedback about this. Also, even
when fixing Keccak as underlying symmetric primitives, there are still
two open questions:

1.) Should Kyber continue to use different functions from the FIPS202
 standard and rely on the internal domain separation of those
 functions or use just cSHAKE or KMAC from NIST SP-800-185 with
 explicit domain separation? The advantage of such a change is that
 fewer Keccak-based functions would be used and that analysis of
 domain separation would be easier. The disadvantage is that one
 either needs additional Keccak permutations to process domain
 separation or needs to store pre-computed Keccak states (after
 absorbing domain separation), one per domain-separated function.

2.) Should the generation of the public matrix A use a 12-round version
 of Keccak ("TurboSHAKE") instead of the standard 24-round version.
 This was proposed by the Keccak team and speeds up one of the most
 costly subroutines of Kyber by a factor of 2. All properties one
 would expect from a hash function are achieved by Keccak with 12
 rounds (by a comfortable margin!). Also, the requirements on the
 output of this function are rather weak; informally it should look
 uniformly random and not interact in weird ways with the lattice
 problems. The main disadvantage of moving to a 12-round version of
 Keccak is that it requires phrasing the function in terms of
 lower-level functions of FIPS202 instead of simply using one of the
 SHA3/SHAKE functions.

We're looking forward to hearing what everybody thinks!

All the best,

The Kyber team

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfa17-34b0-4bb7-bb91-d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269.

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/HE1PR0701MB3050431EFB913EAC9C524FA989199%40HE1PR0701MB3050.eurprd07.prod.outlook.com.

--

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/E0B13AA4-C547-4969-A8C5-0220FF948E9B%40ll.mit.edu.

Blumenthal, Uri - 0553 - MITLL <uri@ll.mit.edu>

Cc: "authors@pg-crystals.org"
Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto

Hi,

1) Using cSHAKE/KMAC seems nice, but | don't know the details of how it affects

implementation complexity/performance. | trust NIST/the authors to make right choices.

2) Yes. | think it is a good idea to use a 12-round version of Keccak ("TurboSHAKE") . As stated,
TurboSHAKE seems to be a cryptographically secure hash function with a good margin. | don't
see any problems using it for the Kyber XOF which have lower requirements. | don't think
phrasing Kyber in terms of Keccak is a disadvantage. | think is it essential that implementations
support lower-level functions like Keccac-p and the AES round function. FIPS 202 clearly states
that other KECCAK-p permutations may be specified in the future. Any implementation not
adhering to this have themself to blame. Kyber will likely be with us for many decades, optimize
for the future, not HW already on the market.

Cheers,

John

From: pqc-forum@list.nist.gov on behalf of Peter Schwabe
Date: Sunday, 4 December 2022 at 02:04

To: pgc-forum

Cc: authors@pqg-crystals.org

Subject: [pqc-forum] Kyber decisions, part 1: Symmetric crypto

Dear all,

This e-mail is a follow-up to our presentation at the 4th NIST PQC
standarization workshop and one of two mails meant to continue and
eventually conclude discussions towards the standardization of Kyber.
Several questions, possible tweaks, and ideas have been proposed by
members of the team, by researchers and future users from the community,
and by NIST. The discussion about the standardization of Kyber-512 has
already been covered in the mail by Dustin from November 30. The
remaining discussions fall roughly into two categories, hence two e-mail
threads. Part 1 (this e-mail) is about the choice of symmetric

primitives in Kyber.

Page 2 of 5

Blumenthal, Uri - 0553 - MITLL <uri@ll.mit.edu>

As a reminder, round-3 Kyber uses multiple algorithms from the Keccak
family (FIPS202). Domain separation is achieved partially by using
different functions (SHAKE-128, SHAKE-256, SHA3-256, and SHA3-512) and
partially by input length. Performance of software implementations of
Kyber is currently bottlenecked by Keccak permutations; in order to
showcase the possible performance of Kyber with hardware support for
symmetric primitives, we also described a "90s" variant based on AES and
SHA2.

We have received several questions along the lines of "What about Kyber
with X instead of Keccak?" (typically with X taking values from the 90s
variant or possibly allowing users of Kyber to choose any symmetric
crypto they fancy). The team feels that having multiple incompatible
versions of Kyber is not desirable and the obvious choice is to stick to
Keccak as the sole underlying symmetric primitive. However, we continue
to be interested in hearing opinions and feedback about this. Also, even
when fixing Keccak as underlying symmetric primitives, there are still

two open questions:

1.) Should Kyber continue to use different functions from the FIPS202
standard and rely on the internal domain separation of those
functions or use just cSHAKE or KMAC from NIST SP-800-185 with
explicit domain separation? The advantage of such a change is that
fewer Keccak-based functions would be used and that analysis of
domain separation would be easier. The disadvantage is that one
either needs additional Keccak permutations to process domain
separation or needs to store pre-computed Keccak states (after
absorbing domain separation), one per domain-separated function.

2.) Should the generation of the public matrix A use a 12-round version
of Keccak ("TurboSHAKE") instead of the standard 24-round version.
This was proposed by the Keccak team and speeds up one of the most
costly subroutines of Kyber by a factor of 2. All properties one

would expect from a hash function are achieved by Keccak with 12
rounds (by a comfortable margin!). Also, the requirements on the
output of this function are rather weak; informally it should look

Page 3 of 5

Blumenthal, Uri - 0553 - MITLL <uri@ll.mit.edu>

uniformly random and not interact in weird ways with the lattice
problems. The main disadvantage of moving to a 12-round version of
Keccak is that it requires phrasing the function in terms of

lower-level functions of FIPS202 instead of simply using one of the
SHA3/SHAKE functions.

We're looking forward to hearing what everybody thinks!

All the best,

The Kyber team

You received this message because you are subscribed to the Google Groups "pgc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-
forum+unsubscribe®@list.nist.gov.

To view this discussion on the web visit https://protect2.fireeye.com/v1/url?
k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfal7-34b0-4b
b7-bb91-
d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2
Fpgc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269.

You received this message because you are subscribed to the Google Groups "pgc-forum"
group.
To unsubscribe from this group and stop receiving emails from it, send an email to pgc-

forum+unsubscribe®@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pac-

forum/
HE1PR0O701MB3050431EFB913EAC9C524FA989199%40HE1PR0O701MB3050.eurprd07.prod.outl

ook.com.

You received this message because you are subscribed to the Google Groups "pgc-forum”

group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-

Page 4 of 5

https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfa17-34b0-4bb7-bb91-d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269
https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfa17-34b0-4bb7-bb91-d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269
https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfa17-34b0-4bb7-bb91-d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269
https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfa17-34b0-4bb7-bb91-d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269
https://protect2.fireeye.com/v1/url?k=31323334-501d5122-313273af-454445555731-23f1e0775bec839e&q=1&e=ac8cfa17-34b0-4bb7-bb91-d4d4469c80a4&u=https%3A%2F%2Fgroups.google.com%2Fa%2Flist.nist.gov%2Fd%2Fmsgid%2Fpqc-forum%2FY4vx7fyh%2FDWcjGrv%2540disp3269
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/HE1PR0701MB3050431EFB913EAC9C524FA989199%40HE1PR0701MB3050.eurprd07.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/HE1PR0701MB3050431EFB913EAC9C524FA989199%40HE1PR0701MB3050.eurprd07.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/HE1PR0701MB3050431EFB913EAC9C524FA989199%40HE1PR0701MB3050.eurprd07.prod.outlook.com?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/HE1PR0701MB3050431EFB913EAC9C524FA989199%40HE1PR0701MB3050.eurprd07.prod.outlook.com?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov

Blumenthal, Uri - 0553 - MITLL <uri@ll.mit.edu>

forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-
forum/E0B13AA4-C547-4969-A8C5-0220FF948E9B%40Il.mit.edu.

Page 5 of 5

mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/E0B13AA4-C547-4969-A8C5-0220FF948E9B%40ll.mit.edu?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/E0B13AA4-C547-4969-A8C5-0220FF948E9B%40ll.mit.edu?utm_medium=email&utm_source=footer

From: Simon Hoerder <simon@hoerder.net> via pgc-forum@list.nist.gov
To: pgc-forum@list.nist.gov

Subject: Re: [pqgc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Sunday, December 04, 2022 01:14:01 PM ET

Hi,

regarding TurboSHAKE I see a messaging problem:

* Allowing TurboSHAKE for PQC but not for hashing is inconsistent.
Message hashing tends to process far more data than is needed for PQC
and is supposed to use the slow method?

* Anyone who deployed SHA-3 / SHAKE so far was counting that as "PQC
preparedness". In SW / SW+ISE implementations it shouldn't be a big
issue to change to round reduced variants but in HW co-processors it
is not a common thing to have a configurable number of rounds. Do you
want to tell those people that they can't use their HW accelerators
for PQC even if there are no security issues? (Not sure how many
there are but I very much suspect the number is > @ in infrastructure

markets.)

The solution would be to update SHA-3 / SHAKE with additional
round-reduced parameter sets and to specify additional PQC parameter
sets that use SHA-3 / SHAKE as it is now. For Kyber that could be
Kyber-512, Kyber-768 and Kyber-1024 with round reduced SHAKE and at
least Kyber-1024-c with classic SHA-3/SHAKE.

I would also like to point out that all HW vendors aiming for CNSA 2.0
transition timelines will be working at least on SHA-3/SHAKE today.
Getting clarity regarding (Turbo- and C-)SHAKE versions asap is a

priority in this context.

Finally, this is not just an issue for Kyber, it is an issue for all PQC

algorithms that rely on SHA-3/SHAKE.
Best,
Simon

(speaking only for myself)

Page 1 of 3

mailto:simon@hoerder.net
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

Simon Hoerder <simon@hoerder.net>

Op 04/12/2022 om 02:03 schreef Peter Schwabe:

A\

Dear all,

This e-mail is a follow-up to our presentation at the 4th NIST PQC
standarization workshop and one of two mails meant to continue and
eventually conclude discussions towards the standardization of Kyber.
Several questions, possible tweaks, and ideas have been proposed by
members of the team, by researchers and future users from the community,
and by NIST. The discussion about the standardization of Kyber-512 has
already been covered in the mail by Dustin from November 30. The
remaining discussions fall roughly into two categories, hence two e-mail
threads. Part 1 (this e-mail) is about the choice of symmetric

primitives in Kyber.

As a reminder, round-3 Kyber uses multiple algorithms from the Keccak
family (FIPS202). Domain separation is achieved partially by using
different functions (SHAKE-128, SHAKE-256, SHA3-256, and SHA3-512) and
partially by input length. Performance of software implementations of
Kyber is currently bottlenecked by Keccak permutations; in order to
showcase the possible performance of Kyber with hardware support for
symmetric primitives, we also described a "90s" variant based on AES and
SHA2.

We have received several questions along the lines of "What about Kyber
with X instead of Keccak?" (typically with X taking values from the 90s
variant or possibly allowing users of Kyber to choose any symmetric
crypto they fancy). The team feels that having multiple incompatible
versions of Kyber is not desirable and the obvious choice is to stick to
Keccak as the sole underlying symmetric primitive. However, we continue
to be interested in hearing opinions and feedback about this. Also, even
when fixing Keccak as underlying symmetric primitives, there are still

two open questions:
1.) Should Kyber continue to use different functions from the FIPS202

standard and rely on the internal domain separation of those

functions or use just cSHAKE or KMAC from NIST SP-800-185 with

Page 2 of 3

Simon Hoerder <simon@hoerder.net>

> explicit domain separation? The advantage of such a change is that
> fewer Keccak-based functions would be used and that analysis of

> domain separation would be easier. The disadvantage is that one

> either needs additional Keccak permutations to process domain

> separation or needs to store pre-computed Keccak states (after

> absorbing domain separation), one per domain-separated function.

>

> 2.) Should the generation of the public matrix A use a 12-round version

> of Keccak ("TurboSHAKE") instead of the standard 24-round version.
> This was proposed by the Keccak team and speeds up one of the most
> costly subroutines of Kyber by a factor of 2. All properties one

> would expect from a hash function are achieved by Keccak with 12

> rounds (by a comfortable margin!). Also, the requirements on the

> output of this function are rather weak; informally it should look
> uniformly random and not interact in weird ways with the lattice

> problems. The main disadvantage of moving to a 12-round version of
> Keccak is that it requires phrasing the function in terms of

> lower-level functions of FIPS202 instead of simply using one of the
> SHA3/SHAKE functions.

>

> We're looking forward to hearing what everybody thinks!

> All the best,

> The Kyber team

You received this message because you are subscribed to the Google Groups "pqc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to
pgc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pqc-forum/3abb38bb-7d60-eff9-6238-b8f8cb8lasde%40hoerder.net.

Page 3 of 3

From: Peter Schwabe <peter@cryptojedi.org> via pgc-forum@list.nist.gov
To: Blumenthal, Uri - 0553 - MITLL <uri@Ill.mit.edu>

cc: John Mattsson <john.mattsson@ericsson.com>, Peter Schwabe <peter@cryptojedi.org>, pqc-
forum <pgc-forum@list.nist.gov>

Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto
Date: Sunday, December 04, 2022 08:39:18 PM ET

"Blumenthal, Uri - 0553 - MITLL" <urigll.mit.edu> wrote:

Dear Uri, dear all,

A\

Both of these proposals make sense. However, I'd like to underscore

> the importance of:

> Kyber uses one PRF, not a bunch (perhaps, with one exception for

> matrix expansion); and Whatever PRF it uses — is a NIST standard.

This may be nitpicking, but I just want to clarify so that everybody is
on the same page: Just one PRF is not sufficient as symmetric building

block for Kyber; we xdo* need hash functions and we do need a XOF.

I would like to understand the reasons for preferring the cSHAKE
solution. At least for software implementations, this will not
significantly reduce code complexity. For any of the proposed solutions,
the costly core routine is the Keccak permutation. For hardware
implementations it depends on what exactly is implemented in hardware

and what the interfaces look like.

All the best,

Peter

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.

Page 1 of 2

mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov
mailto:uri@ll.mit.edu
mailto:john.mattsson@ericsson.com
mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov

Peter Schwabe <peter@cryptojedi.org>

To unsubscribe from this group and stop receiving emails from it, send an email to
pgc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/
msgid/pqgc-forum/Y41LpAv4UKAY/NMT%40disp3269.

Page 2 of 2

From: Markku-Juhani O. Saarinen <mjos.crypto@gmail.com> via pgc-forum@list.nist.gov
To: pgc-forum <pgc-forum@list.nist.gov>

cc: Peter Schwabe <peter@cryptojedi.org>, John Mattsson <john.mattsson@ericsson.com>, pqc-
forum <pgc-forum@list.nist.gov>, u...@Il.mit.edu <uri@Il.mit.edu>

Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto
Date: Sunday, December 04, 2022 10:04:45 PM ET

Hi All,

I'd think that as long as the hardware module can handle various rate/capacity values,
differences between SHA3-256/512, SHAKE128, and SHAKE256 are indeed trivial (effectively
the contents of one padding byte.) As Peter noted, it is purely a matter of domain separation.

- Side-channel secure implementations complicate this a bit. Using the function names of the
Kyber spec, the "G", "PRF", and "KDF" instances need a masked Keccak, while the "XOF" or "H"
doesn't need to be (if | recall correctly!). If there is no direct hardware support for it, masked
Keccak permutations are much more expensive than regular ones. So having the minimum
required "rate" parameter to the security level, there is preferable (assuming that the input is
long enough to affect the number of permutations; for short inputs, it makes no difference.)

- | would prefer domain separation based on input encoding rather than using cSHAKE: Most
hardware architects probably agree that zeroing the state at initialization is preferable to
having a (muxed) 1600-bit holding register -- as would be required to skip the first
permutation in cSHAKE. cSHAKE may also force additional masking refreshes on "secret
hashes" if some particularly unfortunate mode selection is made.

- To me, a 12-round Keccak, especially as an XOF for the expansion of A matrix (where security
requirements are low -- the input and output are always public), makes total sense. Dilithium
would equivalently benefit from this. TurboSHAKE is very natural as long as the round
constants are selected as they have "always" been selected (e.g. in KangarooTwelve - "K12.")

- The TurboSHAKE talk discussed features that go a little bit beyond K12; I interpreted "multi-
string" as input domain separation in the style of TupleHash (which is in SP 800-185).
Additionally, any design decision that increases the potential for parallelism of permutations
would be preferable. The theory of permutation-based cryptography facilitates a bit more of
this than is currently used in NIST standard Keccak modes (yep, | know that the "A" extension
XOFs in Kyber and Dilithium are already running in a de facto counter mode.)

Cheers,

Page 1 of 3

mailto:mjos.crypto@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:peter@cryptojedi.org
mailto:john.mattsson@ericsson.com
mailto:pqc-forum@list.nist.gov
mailto:uri@ll.mit.edu

Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>

- markku

Dr. Markku-Juhani O. Saarinen <mjos@iki.fi>

On Monday, December 5, 2022 at 2:39:14 AM UTC+1 Peter Schwabe wrote:

"Blumenthal, Uri - 0553 - MITLL" <u...@Ill.mit.edu> wrote:

Dear Uri, dear all,

> Both of these proposals make sense. However, I'd like to underscore

> the importance of:
>

>
> Kyber uses one PRF, not a bunch (perhaps, with one exception for
> matrix expansion); and Whatever PRF it uses - is a NIST standard.

This may be nitpicking, but | just want to clarify so that everybody is
on the same page: Just one PRF is not sufficient as symmetric building
block for Kyber; we *do* need hash functions and we do need a XOF.

| would like to understand the reasons for preferring the cSHAKE
solution. At least for software implementations, this will not

significantly reduce code complexity. For any of the proposed solutions,
the costly core routine is the Keccak permutation. For hardware
implementations it depends on what exactly is implemented in hardware
and what the interfaces look like.

All the best,

Peter

You received this message because you are subscribed to the Google Groups "pgc-forum"

group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-

Page 2 of 3

mailto:mjos@iki.fi
mailto:pqc-forum+unsubscribe@list.nist.gov

Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>

forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-
forum/a14b5849-c402-4af8-94¢1-7ed69b18335cn%40list.nist.gov.

Page 3 of 3

mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/a14b5849-c402-4af8-94c1-7ed69b18335cn%40list.nist.gov?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/a14b5849-c402-4af8-94c1-7ed69b18335cn%40list.nist.gov?utm_medium=email&utm_source=footer

From: Mike Hamburg <mike@shiftleft.org> via pgc-forum@list.nist.gov
To: pgc-forum <pgc-forum@list.nist.gov>

Subject: Re: [pqgc-forum] Kyber decisions, part 1: Symmetric crypto
Date: Monday, December 05, 2022 08:00:07 AM ET

[Attempting to re-send, since the list server is flaking out. Apologies if you received this more
than once.]

Hi all,
| mostly agree with Markku here.

| think it's better to domain separate based on input encoding instead of based on cSHAKE. It's
not as broadly supported as SHAKE, and if you have several separate instances then you
either need an extra permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For ThreeBears | used
cSHAKE(parameters | | purpose | | data) with a fixed personalization string “ThreeBears”, but
raw SHAKE would have been about as good — using cSHAKE and personalization was
probably overkill. Here the “parameters” are different between different KEM instances (in
your case eg Kyber512 vs Kyber768 vs Kyber1024). The goal is that if someone accidentally
reuses a seed string for different key sizes, they won't get closely related keys. The “purpose’
is what you're using it for (hash, keygen, generate A, encrypt, PRF etc). The whole (parameters
| | purpose) block has a fixed 8-byte aligned size, in case clients are optimized for that. You
could also put the counter in the purpose block, but | put it at the end to simplify use of
parallel hashing APIs.

| agree that it would be cryptographically fine to generate A using TurboSHAKE, and whether
to do this is mostly a matter of support (in hardware, ISEs, parallel or serial libraries etc) vs
speed. The counterpoint is that Kyber is basically fast enough already, and that introducing a
different function causes more disruption than it's worth even pre-standardization. | would
not want to go beyond the existing mode (sponge construction in counter mode) to avoid
causing problems for hardware. In particular | would not want to use a Farfalle construction.
But since expanding A is called on fixed-size objects, it's possible that it would not go beyond
sponge mode even if TurboSHAKE can do this in general.

To help weigh this, do you have a profile for what fraction of Kyber’s (or Dilithium’s) runtime is
specifically the generation of A?

Regards,

Page 1 of 4

mailto:mike@shiftleft.org
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov

Mike Hamburg <mike@shiftleft.org>

— Mike

On Dec 5, 2022, at 4:04 AM, Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>
wrote:

Hi All,

I'd think that as long as the hardware module can handle various rate/capacity
values, differences between SHA3-256/512, SHAKE128, and SHAKE256 are indeed
trivial (effectively the contents of one padding byte.) As Peter noted, it is purely a
matter of domain separation.

- Side-channel secure implementations complicate this a bit. Using the function
names of the Kyber spec, the "G", "PRF", and "KDF" instances need a masked
Keccak, while the "XOF" or "H" doesn't need to be (if | recall correctly!). If there is no
direct hardware support for it, masked Keccak permutations are much more
expensive than regular ones. So having the minimum required "rate" parameter to
the security level, there is preferable (assuming that the input is long enough to
affect the number of permutations; for short inputs, it makes no difference.)

-l would prefer domain separation based on input encoding rather than using
cSHAKE: Most hardware architects probably agree that zeroing the state at
initialization is preferable to having a (muxed) 1600-bit holding register -- as would
be required to skip the first permutation in cSHAKE. cSHAKE may also force
additional masking refreshes on "secret hashes" if some particularly unfortunate
mode selection is made.

- To me, a 12-round Keccak, especially as an XOF for the expansion of A matrix
(where security requirements are low -- the input and output are always public),
makes total sense. Dilithium would equivalently benefit from this. TurboSHAKE is
very natural as long as the round constants are selected as they have "always" been
selected (e.g. in KangarooTwelve - "K12.")

- The TurboSHAKE talk discussed features that go a little bit beyond K12; |
interpreted "multi-string" as input domain separation in the style of TupleHash
(which is in SP 800-185). Additionally, any design decision that increases the
potential for parallelism of permutations would be preferable. The theory of
permutation-based cryptography facilitates a bit more of this than is currently used

Page 2 of 4

Mike Hamburg <mike@shiftleft.org>

in NIST standard Keccak modes (yep, | know that the "A" extension XOFs in Kyber
and Dilithium are already running in a de facto counter mode.)

Cheers,

- markku

Dr. Markku-Juhani O. Saarinen <mjos@iki.fi>

On Monday, December 5, 2022 at 2:39:14 AM UTC+1 Peter Schwabe wrote:

"Blumenthal, Uri - 0553 - MITLL" <u...@Ill.mit.edu> wrote:

Dear Uri, dear all,

> Both of these proposals make sense. However, I'd like to underscore

> the importance of:
>

>
> Kyber uses one PRF, not a bunch (perhaps, with one exception for
> matrix expansion); and Whatever PRF it uses - is a NIST standard.

This may be nitpicking, but | just want to clarify so that everybody is
on the same page: Just one PRF is not sufficient as symmetric building
block for Kyber; we *do* need hash functions and we do need a XOF.

| would like to understand the reasons for preferring the cSHAKE
solution. At least for software implementations, this will not

significantly reduce code complexity. For any of the proposed solutions,
the costly core routine is the Keccak permutation. For hardware
implementations it depends on what exactly is implemented in hardware
and what the interfaces look like.

All the best,

Peter

Page 3 of 4

mailto:mjos@iki.fi

Mike Hamburg <mike@shiftleft.org>

Page 4 of 4

From: peter..@gmail.com <peter.pessi@gmail.com> via pqc-forum@list.nist.gov
To: pgc-forum <pgc-forum@list.nist.gov>

cc: mi...@shiftleft.org <mike@shiftleft.org>

Subject: Re:[pqgc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Monday, December 05, 2022 12:57:08 PM ET

Hi all,

| just want to add that the runtime benefit of TurboSHAKE is a likely lot higher for Dilithium
(compared to Kyber), especially for memory-constrained devices. While the larger matrix
dimensions are partly to blame, the more important difference is that storing A in full
(between 12 and 42kB) is simply not an option on many devices (neither in SRAM nor in NVM).
This means that A has to be re-generated in each iteration of the rejection loop, adding a huge
performance penalty.

The impact of such a re-generation was analyzed in https://ia.cr/2020/1278. The numbers in
the paper maybe can't be used to derive the exact overhead of re-generating A (Paper uses
2nd-round Dilithium, and the implementation that re-generates A also computes y twice to
save even more memory), but they do show the general direction: the reported runtime
overhead is over 3x. A switch to TurboSHAKE would be highly beneficial there, even more in

absolute than in relative terms.

BR Peter

mi...@shiftleft.org schrieb am Montag, 5. Dezember 2022 um 14:00:02 UTC+1:

[Attempting to re-send, since the list server is flaking out. Apologies if you received this
more than once.]

Hi all,
| mostly agree with Markku here.

| think it's better to domain separate based on input encoding instead of based on cSHAKE.
It's not as broadly supported as SHAKE, and if you have several separate instances then you
either need an extra permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For ThreeBears | used
cSHAKE(parameters | | purpose | | data) with a fixed personalization string “ThreeBears”,
but raw SHAKE would have been about as good — using cSHAKE and personalization was
probably overkill. Here the “parameters” are different between different KEM instances (in

Page 1 of 4

mailto:peter.pessl@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:mike@shiftleft.org

peter..@gmail.com <peter.pessl@gmail.com>

your case eg Kyber512 vs Kyber768 vs Kyber1024). The goal is that if someone accidentally
reuses a seed string for different key sizes, they won't get closely related keys. The

“purpose is what you're using it for (hash, keygen, generate A, encrypt, PRF etc). The whole
(parameters | | purpose) block has a fixed 8-byte aligned size, in case clients are optimized
for that. You could also put the counter in the purpose block, but | put it at the end to
simplify use of parallel hashing APIs.

| agree that it would be cryptographically fine to generate A using TurboSHAKE, and whether
to do this is mostly a matter of support (in hardware, ISEs, parallel or serial libraries etc) vs
speed. The counterpoint is that Kyber is basically fast enough already, and that introducing
a different function causes more disruption than it's worth even pre-standardization. |
would not want to go beyond the existing mode (sponge construction in counter mode) to
avoid causing problems for hardware. In particular | would not want to use a Farfalle
construction. But since expanding A is called on fixed-size objects, it's possible that it would
not go beyond sponge mode even if TurboSHAKE can do this in general.

To help weigh this, do you have a profile for what fraction of Kyber’s (or Dilithium'’s) runtime
is specifically the generation of A?

Regards,

— Mike

On Dec 5, 2022, at 4:04 AM, Markku-Juhani O. Saarinen <mjos....@gmail.com>
wrote:

Hi All,

I'd think that as long as the hardware module can handle various rate/capacity
values, differences between SHA3-256/512, SHAKE128, and SHAKE256 are indeed
trivial (effectively the contents of one padding byte.) As Peter noted, it is purely a
matter of domain separation.

- Side-channel secure implementations complicate this a bit. Using the function
names of the Kyber spec, the "G", "PRF", and "KDF" instances need a masked

Keccak, while the "XOF" or "H" doesn't need to be (if | recall correctly!). If there is
no direct hardware support for it, masked Keccak permutations are much more
expensive than regular ones. So having the minimum required "rate" parameter

Page 2 of 4

peter..@gmail.com <peter.pessl@gmail.com>

to the security level, there is preferable (assuming that the input is long enough
to affect the number of permutations; for short inputs, it makes no difference.)

-l would prefer domain separation based on input encoding rather than using
cSHAKE: Most hardware architects probably agree that zeroing the state at
initialization is preferable to having a (muxed) 1600-bit holding register -- as
would be required to skip the first permutation in cSHAKE. cSHAKE may also
force additional masking refreshes on "secret hashes" if some particularly
unfortunate mode selection is made.

- To me, a 12-round Keccak, especially as an XOF for the expansion of A matrix
(where security requirements are low -- the input and output are always public),
makes total sense. Dilithium would equivalently benefit from this. TurboSHAKE is
very natural as long as the round constants are selected as they have "always"
been selected (e.g. in KangarooTwelve - "K12.")

- The TurboSHAKE talk discussed features that go a little bit beyond K12; |
interpreted "multi-string" as input domain separation in the style of TupleHash
(which is in SP 800-185). Additionally, any design decision that increases the
potential for parallelism of permutations would be preferable. The theory of
permutation-based cryptography facilitates a bit more of this than is currently
used in NIST standard Keccak modes (yep, | know that the "A" extension XOFs in
Kyber and Dilithium are already running in a de facto counter mode.)

Cheers,

- markku

Dr. Markku-Juhani O. Saarinen <mj...@iki.fi>

On Monday, December 5, 2022 at 2:39:14 AM UTC+1 Peter Schwabe wrote:

"Blumenthal, Uri - 0553 - MITLL" <u...@Il.mit.edu> wrote:
Dear Uri, dear all,
> Both of these proposals make sense. However, I'd like to underscore

Page 3 of 4

peter..@gmail.com <peter.pessl@gmail.com>

> the importance of:
>

>
> Kyber uses one PRF, not a bunch (perhaps, with one exception for
> matrix expansion); and Whatever PRF it uses - is a NIST standard.

This may be nitpicking, but | just want to clarify so that everybody is
on the same page: Just one PRF is not sufficient as symmetric building
block for Kyber; we *do* need hash functions and we do need a XOF.

| would like to understand the reasons for preferring the cSHAKE
solution. At least for software implementations, this will not

significantly reduce code complexity. For any of the proposed solutions,
the costly core routine is the Keccak permutation. For hardware
implementations it depends on what exactly is implemented in hardware
and what the interfaces look like.

All the best,

Peter

You received this message because you are subscribed to the Google Groups "pgc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqgc-
forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-
forum/0cc7e247-80a1-44e7-b2d7-b4bbb97c65bbn%40list.nist.gov.

Page 4 of 4

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/0cc7e247-80a1-44e7-b2d7-b4bbb97c65bbn%40list.nist.gov?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/0cc7e247-80a1-44e7-b2d7-b4bbb97c65bbn%40list.nist.gov?utm_medium=email&utm_source=footer

From: Peter Schwabe <peter@cryptojedi.org> via pgc-forum@list.nist.gov

To:

Mike Hamburg <mike@shiftleft.org>

CcC: Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>, pqc-forum <pgc-forum@list.nist.gov>,

Peter Schwabe <peter@cryptojedi.org>, John Mattsson <john.mattsson@ericsson.com>,
u...@ll.mit.edu <uri@ll.mit.edu>

Subject: Re: [pqgc-forum] Kyber decisions, part 1: Symmetric crypto
Date: Friday, December 09, 2022 07:15:20 AM ET

Mi

>

Hi

A\

ke Hamburg <mikea@shiftleft.org> wrote:
Hi altl,

Mike, hi all,

I mostly agree with Markku here.

I think it's better to domain separate based on input encoding instead
of based on cSHAKE. 1It’'s not as broadly supported as SHAKE, and if
you have several separate instances then you either need an extra
permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For
ThreeBears I used cSHAKE(parameters || purpose || data) with a fixed
personalization string “ThreeBears”, but raw SHAKE would have been
about as good — using cSHAKE and personalization was probably
overkill. Here the “parameters are different between different KEM
instances (in your case eg Kyber512 vs Kyber768 vs Kyber1024). The
goal is that if someone accidentally reuses a seed string for
different key sizes, they won’'t get closely related keys. The
‘purpose” is what you're using it for (hash, keygen, generate A,
encrypt, PRF etc). The whole (parameters || purpose) block has a
fixed 8-byte aligned size, in case clients are optimized for that.

You could also put the counter in the purpose block, but I put it at
the end to simplify use of parallel hashing APIs.

I agree that it would be cryptographically fine to generate A using
TurboSHAKE, and whether to do this is mostly a matter of support (in
hardware, ISEs, parallel or serial libraries etc) vs speed. The
counterpoint is that Kyber is basically fast enough already, and that

introducing a different function causes more disruption than it’s

Page 1 of 4

mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov
mailto:mike@shiftleft.org
mailto:mjos.crypto@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:peter@cryptojedi.org
mailto:john.mattsson@ericsson.com
mailto:uri@ll.mit.edu

Peter Schwabe <peter@cryptojedi.org>

> worth even pre-standardization. I would not want to go beyond the

> existing mode (sponge construction in counter mode) to avoid causing

> problems for hardware. In particular I would not want to use a

> Farfalle construction. But since expanding A is called on fixed-size
> objects, it's possible that it would not go beyond sponge mode even if

> TurboSHAKE can do this in general.

> To help weigh this, do you have a profile for what fraction of Kyber’s

> (or Dilithium’s) runtime is specifically the generation of A?

That's highly platform dependent. I just ran some benchmarks on a
Haswell machine for the AVX2-optimized implementation. What I'm getting

is:

= KYBER 512

keygen: 25120
encaps: 39180
decaps: 30868
gen_A: 7472
xof: 6088

KYBER 768

keygen: 43596
encaps: 59464
decaps: 47684
gen_A: 20320
xof: 16865

=——— KYBER 1024

keygen: 60396
encaps: 83576
decaps: 67656

Page 2 of 4

Peter Schwabe <peter@cryptojedi.org>

gen_A: 29664
xof: 24109

Here, "gen_A" is the full cycles for generation of the matrix A,
including the cycles for rejection sampling; "xof" is the cycles used on
SHAKE-128, i.e., the cycles that would pretty exactly halve when moving
to TurboSHAKE.

Note that in this implementation, the generation of A is using a fast
vectorized implementation of Keccak (vectorizing across different matrix
entries), while many other calls to Keccak are sequential and thus much
slower. On embedded platforms like the M4 I would expect the relative
cost for "xof" to be considerably higher, simply because there is no
speedup from vectorization. I can run those benchmarks when I'm back

from my travels.

On the other hand, in a masked implementation I would expect the
relative cost of "xof" to be much lower, simply because we don't require

masking in the generation of A, but we do for most other Keccak calls.

With HW acceleration of Keccak it's somewhat hard to predict and it will
depend a lot on how large the acceleration is: on the one hand, all
Keccak calls will likely have the same cost (so matrix generation will
be relatively more costly compared to other Keccak calls than in the
AVX2 implementation), but on the other hand, one would expect polynomial
arithmetic to use a more significant portion of the cycles, so overall

the cost for Keccak permutations might not matter all that much.

Does this help?

All the best,

Peter

Page 3 of 4

Peter Schwabe <peter@cryptojedi.org>

You received this message because you are subscribed to the Google Groups "pqc-forum"

group.
To unsubscribe from this group and stop receiving emails from it, send an email to

pgc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/

msgid/pgc-forum/Y5Mmr9gzSaNESCsM%40disp3269.

Page 4 of 4

From: Mike Hamburg <mike@shiftleft.org> via pgc-forum@list.nist.gov
To: Peter Schwabe <peter@cryptojedi.org>

CcC: Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>, pqc-forum <pgc-forum@list.nist.gov>,
John Mattsson <john.mattsson@ericsson.com>, u...@ll.mit.edu <uri@Il.mit.edu>

Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto
Date: Friday, December 09, 2022 09:53:38 AM ET

On Dec 9, 2022, at 1:14 PM, Peter Schwabe <peter@cryptojedi.org> wrote:

Mike Hamburg <mike@shiftleft.org> wrote:

Hi all,

Hi Mike, hi all,

I mostly agree with Markku here.

I think it's better to domain separate based on input encoding instead
of based on cSHAKE. It's not as broadly supported as SHAKE, and if
you have several separate instances then you either need an extra
permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For
ThreeBears I used cSHAKE(parameters | | purpose | | data) with a fixed
personalization string “ThreeBears"”, but raw SHAKE would have been
about as good — using cSHAKE and personalization was probably
overkill. Here the “parameters’ are different between different KEM
instances (in your case eg Kyber512 vs Kyber768 vs Kyber1024). The
goal is that if someone accidentally reuses a seed string for

different key sizes, they won't get closely related keys. The

‘purpose’ is what you're using it for (hash, keygen, generate A,
encrypt, PRF etc). The whole (parameters | | purpose) block has a
fixed 8-byte aligned size, in case clients are optimized for that.

You could also put the counter in the purpose block, but I put it at

the end to simplify use of parallel hashing APIs.

I agree that it would be cryptographically fine to generate A using
TurboSHAKE, and whether to do this is mostly a matter of support (in
hardware, ISEs, parallel or serial libraries etc) vs speed. The
counterpoint is that Kyber is basically fast enough already, and that
introducing a different function causes more disruption than it's
worth even pre-standardization. I would not want to go beyond the
existing mode (sponge construction in counter mode) to avoid causing

Page 1 of 4

mailto:mike@shiftleft.org
mailto:pqc-forum@list.nist.gov
mailto:peter@cryptojedi.org
mailto:mjos.crypto@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:john.mattsson@ericsson.com
mailto:uri@ll.mit.edu
mailto:mike@shiftleft.org

Mike Hamburg <mike@shiftleft.org>

problems for hardware. In particular I would not want to use a
Farfalle construction. But since expanding A is called on fixed-size
objects, it's possible that it would not go beyond sponge mode even if
TurboSHAKE can do this in general.

To help weigh this, do you have a profile for what fraction of Kyber’s
(or Dilithium's) runtime is specifically the generation of A?

That's highly platform dependent. I just ran some benchmarks on a

Haswell machine for the AVX2-optimized implementation. What I'm getting

keygen: 25120
encaps: 39180
decaps: 30868
gen_A: 7472
xof: 6088

keygen: 43596
encaps: 59464
decaps: 47684
gen_A: 20320
xof: 16865

keygen: 60396
encaps: 83576
decaps: 67656
gen_A: 29664
xof: 24109

Page 2 of 4

Mike Hamburg <mike@shiftleft.org>

Here, "gen_A" is the full cycles for generation of the matrix A,
including the cycles for rejection sampling; "xof" is the cycles used on
SHAKE-128, i.e., the cycles that would pretty exactly halve when moving

to TurboSHAKE.

Note that in this implementation, the generation of A is using a fast
vectorized implementation of Keccak (vectorizing across different matrix
entries), while many other calls to Keccak are sequential and thus much
slower. On embedded platforms like the M4 I would expect the relative
cost for "xof" to be considerably higher, simply because there is no
speedup from vectorization. I can run those benchmarks when I'm back

from my travels.

On the other hand, in a masked implementation I would expect the
relative cost of "xof" to be much lower, simply because we don't require
masking in the generation of A, but we do for most other Keccak calls.
With HW acceleration of Keccak it's somewhat hard to predict and it will
depend a lot on how large the acceleration is: on the one hand, all
Keccak calls will likely have the same cost (so matrix generation will

be relatively more costly compared to other Keccak calls than in the
AVX2 implementation), but on the other hand, one would expect polynomial
arithmetic to use a more significant portion of the cycles, so overall

the cost for Keccak permutations might not matter all that much.

Does this help?

All the best,

Peter

Hi Peter, thanks for this data.

It looks like the savings in the cases above, for a full key exchange assuming

Page 3 of 4

Mike Hamburg <mike@shiftleft.org>
that decaps regenerates A, are about 10%, 17% and 17% for the three security
levels. That's not nothing, but it's not a huge amount either. Also, in terms of
absolute time savings on eg 3 GHz Haswell, even for Kyber 1024 we're looking
at about 12ps savings for the entire key exchange. 'm not convinced that's worth
the change, even though it's cryptographically fine.
Maybe on the M4 it will be relevant, though again I'm not sure many M4-class
devices will be doing key exchanges that a human or time-relevant process will
wait for.
| agree that in hardware, switching to TurboSHAKE won't typically save as much
because, at least if Keccak is implemented in the most common one-cycle-per-
round configuration, it won't be the bottleneck unless the NTT unit is very large.
In fact, the savings might be almost zero if the XOF and NTT operate in parallel.
TurboSHAKE will also be annoying for hardware designers, because (speaking
as a hardware designer) we will need to alter our accelerators to support it but
as far as | can tell it isn't specd yet. Since hardware has a long development
cycle, this will mean adding a bunch of extra knobs to the Keccak accelerator
and hoping we picked the right ones.
Overall, I'm not in favor of this change but | don't think it will be a disaster either.
There will be less risk for hardware projects if you can specify what TurboSHAKE
will look like, possibly even before deciding whether to use it.
Regards,

— Mike

Page 4 of 4

From: Stott, David - 0553 - MITLL <david.stott@Il.mit.edu> via pac-forum@list.nist.gov

To: Mike Hamburg <mike@shiftleft.org>, Peter Schwabe <peter@cryptojedi.org>, pgc-forum
<pgc-forum@list.nist.gov>

CC: Markku-Juhani O. Saarinen <mjos.crypto@gmail.com>, John Mattsson
<john.mattsson@ericsson.com>, Blumenthal, Uri - 0553 - MITLL <uri@Il.mit.edu>

Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Friday, December 09, 2022 10:47:43 AM ET

Attachments: smime.p7m

Thanks, Mike.

We have looked at a softcore based design with a SHAKE coprocessor (without the NTT
acceleration). Our findings support your comments below.

* The benefit of TurboSHAKE would be very small for HW (12 cycles per keccak-permute
round), where our current unoptimized coprocessor interface spends more than 100
cycles transferring data

* With HW acceleration of SHA3 (SHAKE or TurboSHAKE) the critical path becomes NTT

The actual changes to the code to go to 12 rounds seem rather minor (granted we are not
working on a production-quality implementation).

The software-only version, of course, is a different story.

-david

From: on behalf of Mike Hamburg

Date: Friday, December 9, 2022 at 9:54 AM

To: Peter Schwabe

Cc: "Markku-Juhani O. Saarinen", pgc-forum , John

Mattsson , "Blumenthal, Uri - 0553 - MITLL"

Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto

On Dec 9, 2022, at 1:14 PM, Peter Schwabe wrote:

Mike Hamburg <mike@shiftleft.org> wrote:

Hi all,

Page 1 0of 6

mailto:david.stott@ll.mit.edu
mailto:pqc-forum@list.nist.gov
mailto:mike@shiftleft.org
mailto:peter@cryptojedi.org
mailto:pqc-forum@list.nist.gov
mailto:mjos.crypto@gmail.com
mailto:john.mattsson@ericsson.com
mailto:uri@ll.mit.edu

Thanks, Mike.

We have looked at a softcore based design with a SHAKE coprocessor (without the NTT acceleration). Our findings support your comments below.

			The benefit of TurboSHAKE would be very small for HW (12 cycles per keccak-permute round), where our current unoptimized coprocessor interface spends more than 100 cycles transferring data

			With HW acceleration of SHA3 (SHAKE or TurboSHAKE) the critical path becomes NTT

The actual changes to the code to go to 12 rounds seem rather minor (granted we are not working on a production-quality implementation).

The software-only version, of course, is a different story.

-david

From: <pqc-forum@list.nist.gov> on behalf of Mike Hamburg <mike@shiftleft.org>
Date: Friday, December 9, 2022 at 9:54 AM
To: Peter Schwabe <peter@cryptojedi.org>
Cc: "Markku-Juhani O. Saarinen" <mjos.crypto@gmail.com>, pqc-forum <pqc-forum@list.nist.gov>, John Mattsson <john.mattsson@ericsson.com>, "Blumenthal, Uri - 0553 - MITLL" <uri@ll.mit.edu>
Subject: Re: [pqc-forum] Kyber decisions, part 1: Symmetric crypto

On Dec 9, 2022, at 1:14 PM, Peter Schwabe <peter@cryptojedi.org> wrote:

Mike Hamburg <mike@shiftleft.org> wrote:

Hi all,

Hi Mike, hi all,

I mostly agree with Markku here.

I think it’s better to domain separate based on input encoding instead
of based on cSHAKE. It’s not as broadly supported as SHAKE, and if
you have several separate instances then you either need an extra
permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For
ThreeBears I used cSHAKE(parameters || purpose || data) with a fixed
personalization string “ThreeBears”, but raw SHAKE would have been
about as good — using cSHAKE and personalization was probably
overkill. Here the `parameters` are different between different KEM
instances (in your case eg Kyber512 vs Kyber768 vs Kyber1024). The
goal is that if someone accidentally reuses a seed string for
different key sizes, they won’t get closely related keys. The
`purpose` is what you’re using it for (hash, keygen, generate A,
encrypt, PRF etc). The whole (parameters || purpose) block has a
fixed 8-byte aligned size, in case clients are optimized for that.
You could also put the counter in the purpose block, but I put it at
the end to simplify use of parallel hashing APIs.

I agree that it would be cryptographically fine to generate A using
TurboSHAKE, and whether to do this is mostly a matter of support (in
hardware, ISEs, parallel or serial libraries etc) vs speed. The
counterpoint is that Kyber is basically fast enough already, and that
introducing a different function causes more disruption than it’s
worth even pre-standardization. I would not want to go beyond the
existing mode (sponge construction in counter mode) to avoid causing
problems for hardware. In particular I would not want to use a
Farfalle construction. But since expanding A is called on fixed-size
objects, it’s possible that it would not go beyond sponge mode even if
TurboSHAKE can do this in general.

To help weigh this, do you have a profile for what fraction of Kyber’s
(or Dilithium’s) runtime is specifically the generation of A?

That's highly platform dependent. I just ran some benchmarks on a
Haswell machine for the AVX2-optimized implementation. What I'm getting
is:

====== KYBER 512 ======

keygen: 25120
encaps: 39180
decaps: 30868
gen_A: 7472
xof: 6088

====== KYBER 768 ======

keygen: 43596
encaps: 59464
decaps: 47684
gen_A: 20320
xof: 16865

====== KYBER 1024 ======

keygen: 60396
encaps: 83576
decaps: 67656
gen_A: 29664
xof: 24109

Here, "gen_A" is the full cycles for generation of the matrix A,
including the cycles for rejection sampling; "xof" is the cycles used on
SHAKE-128, i.e., the cycles that would pretty exactly halve when moving
to TurboSHAKE.

Note that in this implementation, the generation of A is using a fast
vectorized implementation of Keccak (vectorizing across different matrix
entries), while many other calls to Keccak are sequential and thus much
slower. On embedded platforms like the M4 I would expect the relative
cost for "xof" to be considerably higher, simply because there is no
speedup from vectorization. I can run those benchmarks when I'm back
from my travels.

On the other hand, in a masked implementation I would expect the
relative cost of "xof" to be much lower, simply because we don't require
masking in the generation of A, but we do for most other Keccak calls.

With HW acceleration of Keccak it's somewhat hard to predict and it will
depend a lot on how large the acceleration is: on the one hand, all
Keccak calls will likely have the same cost (so matrix generation will
be relatively more costly compared to other Keccak calls than in the
AVX2 implementation), but on the other hand, one would expect polynomial
arithmetic to use a more significant portion of the cycles, so overall
the cost for Keccak permutations might not matter all that much.

Does this help?

All the best,

Peter

Hi Peter, thanks for this data.

It looks like the savings in the cases above, for a full key exchange assuming

that decaps regenerates A, are about 10%, 17% and 17% for the three security

levels. That’s not nothing, but it’s not a huge amount either. Also, in terms of

absolute time savings on eg 3 GHz Haswell, even for Kyber 1024 we’re looking

at about 12µs savings for the entire key exchange. I’m not convinced that’s worth

the change, even though it’s cryptographically fine.

Maybe on the M4 it will be relevant, though again I’m not sure many M4-class

devices will be doing key exchanges that a human or time-relevant process will

wait for.

I agree that in hardware, switching to TurboSHAKE won’t typically save as much

because, at least if Keccak is implemented in the most common one-cycle-per-

round configuration, it won’t be the bottleneck unless the NTT unit is very large.

In fact, the savings might be almost zero if the XOF and NTT operate in parallel.

TurboSHAKE will also be annoying for hardware designers, because (speaking

as a hardware designer) we will need to alter our accelerators to support it but

as far as I can tell it isn’t spec’d yet. Since hardware has a long development

cycle, this will mean adding a bunch of extra knobs to the Keccak accelerator

and hoping we picked the right ones.

Overall, I’m not in favor of this change but I don’t think it will be a disaster either.

There will be less risk for hardware projects if you can specify what TurboSHAKE

will look like, possibly even before deciding whether to use it.

Regards,

— Mike

--
You received this message because you are subscribed to the Google Groups "pqc-forum" group.
To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.
To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org.

--

You received this message because you are subscribed to the Google Groups "pqc-forum" group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqc-forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/BB6D6DC9-33D8-43C7-905E-F4C1034B9869%40ll.mit.edu.

mailto:mike@shiftleft.org
mailto:mike@shiftleft.org

Stott, David - 0553 - MITLL <david.stott@ll.mit.edu>

Hi Mike, hi all,

I mostly agree with Markku here.

I think it's better to domain separate based on input encoding instead
of based on cSHAKE. It's not as broadly supported as SHAKE, and if
you have several separate instances then you either need an extra
permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For
ThreeBears I used cSHAKE(parameters | | purpose || data) with a fixed
personalization string “ThreeBears”, but raw SHAKE would have been
about as good — using cSHAKE and personalization was probably
overkill. Here the “parameters’ are different between different KEM
instances (in your case eg Kyber512 vs Kyber768 vs Kyber1024). The
goal is that if someone accidentally reuses a seed string for

different key sizes, they won't get closely related keys. The

‘purpose’ is what you're using it for (hash, keygen, generate A,
encrypt, PRF etc). The whole (parameters | | purpose) block has a

fixed 8-byte aligned size, in case clients are optimized for that.

You could also put the counter in the purpose block, butI put it at

the end to simplify use of parallel hashing APIs.

I agree that it would be cryptographically fine to generate A using
TurboSHAKE, and whether to do this is mostly a matter of support (in
hardware, ISEs, parallel or serial libraries etc) vs speed. The
counterpoint is that Kyber is basically fast enough already, and that
introducing a different function causes more disruption than it's
worth even pre-standardization. I would not want to go beyond the
existing mode (sponge construction in counter mode) to avoid causing
problems for hardware. In particular I would not want to use a

Farfalle construction. But since expanding A is called on fixed-size
objects, it's possible that it would not go beyond sponge mode even if

TurboSHAKE can do this in general.

Page 2 of 6

Stott, David - 0553 - MITLL <david.stott@ll.mit.edu>

To help weigh this, do you have a profile for what fraction of Kyber's

(or Dilithium’s) runtime is specifically the generation of A?

That's highly platform dependent. I just ran some benchmarks on a

Haswell machine for the AVX2-optimized implementation. What I'm getting

keygen: 25120
encaps: 39180
decaps: 30868
gen_A: 7472
xof: 6088

keygen: 43596
encaps: 59464
decaps: 47684
gen_A: 20320
xof: 16865

keygen: 60396
encaps: 83576
decaps: 67656
gen_A: 29664
xof: 24109

Here, "gen_A" is the full cycles for generation of the matrix A,

including the cycles for rejection sampling; "xof" is the cycles used on

Page 3 of 6

Stott, David - 0553 - MITLL <david.stott@ll.mit.edu>

SHAKE-128, i.e., the cycles that would pretty exactly halve when moving

to TurboSHAKE.

Note that in this implementation, the generation of A is using a fast
vectorized implementation of Keccak (vectorizing across different matrix
entries), while many other calls to Keccak are sequential and thus much
slower. On embedded platforms like the M4 I would expect the relative
cost for "xof" to be considerably higher, simply because there is no
speedup from vectorization. I can run those benchmarks when I'm back

from my travels.

On the other hand, in a masked implementation I would expect the
relative cost of "xof" to be much lower, simply because we don't require

masking in the generation of A, but we do for most other Keccak calls.

With HW acceleration of Keccak it's somewhat hard to predict and it will
depend a lot on how large the acceleration is: on the one hand, all

Keccak calls will likely have the same cost (so matrix generation will

be relatively more costly compared to other Keccak calls than in the

AVX2 implementation), but on the other hand, one would expect polynomial
arithmetic to use a more significant portion of the cycles, so overall

the cost for Keccak permutations might not matter all that much.

Does this help?

All the best,

Peter
Hi Peter, thanks for this data.

It looks like the savings in the cases above, for a full key exchange assuming
that decaps regenerates A, are about 10%, 17% and 17% for the three security
levels. That's not nothing, but it's not a huge amount either. Also, in terms of

absolute time savings on eg 3 GHz Haswell, even for Kyber 1024 we're looking

Page 4 of 6

Stott, David - 0553 - MITLL <david.stott@ll.mit.edu>

at about 12ps savings for the entire key exchange. I'm not convinced that's worth
the change, even though it's cryptographically fine.

Maybe on the M4 it will be relevant, though again I'm not sure many M4-class
devices will be doing key exchanges that a human or time-relevant process will
wait for.

| agree that in hardware, switching to TurboSHAKE won't typically save as much
because, at least if Keccak is implemented in the most common one-cycle-per-
round configuration, it won't be the bottleneck unless the NTT unit is very large.
In fact, the savings might be almost zero if the XOF and NTT operate in parallel.
TurboSHAKE will also be annoying for hardware designers, because (speaking

as a hardware designer) we will need to alter our accelerators to support it but
as far as | can tell it isn't specd yet. Since hardware has a long development
cycle, this will mean adding a bunch of extra knobs to the Keccak accelerator
and hoping we picked the right ones.

Overall, I'm not in favor of this change but | don't think it will be a disaster either.
There will be less risk for hardware projects if you can specify what TurboSHAKE
will look like, possibly even before deciding whether to use it.

Regards,

— Mike

You received this message because you are subscribed to the Google Groups "pgc-forum”
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-
forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-

Page 5 of 6

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer

Stott, David - 0553 - MITLL <david.stott@ll.mit.edu>

forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org.

You received this message because you are subscribed to the Google Groups "pgc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pqgc-
forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-
forum/BB6D6DC9-33D8-43C7-905E-F4C1034B9869%40Il.mit.edu.

Page 6 of 6

https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/BB6D6DC9-33D8-43C7-905E-F4C1034B9869%40ll.mit.edu?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/BB6D6DC9-33D8-43C7-905E-F4C1034B9869%40ll.mit.edu?utm_medium=email&utm_source=footer

From: dustin...@nist.gov <dustin.moody@nist.gov> via pqc-forum <pgc-forum@list.nist.gov>
To: pgc-forum <pgc-forum@list.nist.gov>

cc: Peter Schwabe <peter@cryptojedi.org>

Subject: Re:[pqgc-forum] Kyber decisions, part 1: Symmetric crypto

Date: Tuesday, January 24, 2023 12:15:01 PM ET

At the 4th NIST PQC Standardization Conference, Gilles Van Assche gave a talk entitled "12
round-Keccak for secure hashing". Shortly after, Peter Schwabe asked for feedback (on behalf

of the Kyber team) if the generation of the public matrix A should use a 12-round version of
Keccak (i.e. "TurboSHAKE") instead of the standard 24-round version. The main reason for the
change would be that using TurboSHAKE would speed up one of the costly subroutines of
Kyber by about a factor of 2.

NIST appreciates the feedback provided back to the Kyber team on the pgc-forum. There were
several advantages and disadvantages pointed out. We carefully read the arguments, and also
discussed the question with our larger crypto team (and not just our PQC team). We wanted
to let you know that we are NOT planning on incorporating a 12-round version of Keccak for
any of the PQC standards we are currently working on. Our reasons for making this decision
are provided below.

While speedups would be welcome, in our view the overall effect on a fully implementation of
Kyber (or another PQC algorithm) would likely be modest - something on the order of around
20-25% or so. However, this would be a significant change to make, which would obviously be
occurring after the third round, which means it may not receive as much public scrutiny and
analysis. While the security requirements on the output of a reduced-round version of Keccak
used for generating the A matrix are weak, we do not feel they have been completely
described and studied. The Kyber team also pointed out a disadvantage in that moving to a
12-round version of Keccak would require phrasing the function in terms of lower-level
functions of FIPS202 instead of simply using one of the SHA3/SHAKE functions. Considering
the above, we did not feel the potential advantages outweighed the disadvantages. NIST
encourages further study of TurboSHAKE.

Dustin Moody

NIST PQC team

On Friday, December 9, 2022 at 10:47:37 AM UTC-5 Stott, David - 0553 - MITLL wrote:

Page 1 of 7

mailto:dustin.moody@nist.gov
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:peter@cryptojedi.org
https://csrc.nist.gov/csrc/media/Presentations/2022/twelve-round-keccak-for-secure-hashing/images-media/session1-vanassche-twelve-round-keccak-pqc2022.pdf
https://csrc.nist.gov/csrc/media/Presentations/2022/twelve-round-keccak-for-secure-hashing/images-media/session1-vanassche-twelve-round-keccak-pqc2022.pdf
https://gcc02.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgroups.google.com%2Fu%2F1%2Fa%2Flist.nist.gov%2Fg%2Fpqc-forum%2Fc%2F5HveEPBsbxY%2Fm%2FtYr10n8IFgAJ&data=05%7C01%7Cyi-kai.liu%40nist.gov%7Cd74a1ab92050439a1c7c08dafe2e83c1%7C2ab5d82fd8fa4797a93e054655c61dec%7C1%7C0%7C638101773013125299%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=pPa1Ouuxegnp5AoE5zvz5AT03oyA4BGLmNAEWw6wKqs%3D&reserved=0

dustin...@nist.gov <dustin.moody@nist.gov>

Thanks, Mike.

We have looked at a softcore based design with a SHAKE coprocessor (without the NTT
acceleration). Our findings support your comments below.

* The benefit of TurboSHAKE would be very small for HW (12 cycles per keccak-permute
round), where our current unoptimized coprocessor interface spends more than 100
cycles transferring data

* With HW acceleration of SHA3 (SHAKE or TurboSHAKE) the critical path becomes NTT

The actual changes to the code to go to 12 rounds seem rather minor (granted we are not
working on a production-quality implementation).

The software-only version, of course, is a different story.

-david

From: <pgc-forum@list.nist.gov> on behalf of Mike Hamburg <mike@shiftleft.org>
Date: Friday, December 9, 2022 at 9:54 AM
To: Peter Schwabe <peter@cryptojedi.org>

Cc: "Markku-Juhani O. Saarinen" <mjos.crypto@gmail.com>, pgc-forum <pgc-

forum@list.nist.gov>, John Mattsson <john.mattsson@ericsson.com>, "Blumenthal, Uri -
0553 - MITLL" <uri@Il.mit.edu>
Subject: Re: [pgc-forum] Kyber decisions, part 1: Symmetric crypto

On Dec 9, 2022, at 1:14 PM, Peter Schwabe <peter@cryptojedi.org> wrote:

Mike Hamburg <mike@shiftleft.org> wrote:

Hi all,

Hi Mike, hi all,

I mostly agree with Markku here.

I think it's better to domain separate based on input encoding instead

of based on cSHAKE. It's not as broadly supported as SHAKE, and if

Page 2 of 7

mailto:pqc-forum@list.nist.gov
mailto:mike@shiftleft.org
mailto:peter@cryptojedi.org
mailto:mjos.crypto@gmail.com
mailto:pqc-forum@list.nist.gov
mailto:pqc-forum@list.nist.gov
mailto:john.mattsson@ericsson.com
mailto:uri@ll.mit.edu
mailto:peter@cryptojedi.org
mailto:mike@shiftleft.org
mailto:mike@shiftleft.org

dustin...@nist.gov <dustin.moody@nist.gov>

you have several separate instances then you either need an extra
permutation call or else several precomputed 200-byte states, which is
significant in hardware or perhaps in embedded software. For
ThreeBears I used cSHAKE(parameters | | purpose | | data) with a fixed
personalization string “ThreeBears”, but raw SHAKE would have been
about as good — using cSHAKE and personalization was probably
overkill. Here the “‘parameters’ are different between different KEM
instances (in your case eg Kyber512 vs Kyber768 vs Kyber1024). The
goal is that if someone accidentally reuses a seed string for

different key sizes, they won't get closely related keys. The

‘purpose’ is what you're using it for (hash, keygen, generate A,
encrypt, PRF etc). The whole (parameters | | purpose) block has a
fixed 8-byte aligned size, in case clients are optimized for that.

You could also put the counter in the purpose block, butI put it at

the end to simplify use of parallel hashing APIs.

I agree that it would be cryptographically fine to generate A using
TurboSHAKE, and whether to do this is mostly a matter of support (in
hardware, ISEs, parallel or serial libraries etc) vs speed. The
counterpoint is that Kyber is basically fast enough already, and that
introducing a different function causes more disruption than it's
worth even pre-standardization. I would not want to go beyond the
existing mode (sponge construction in counter mode) to avoid causing
problems for hardware. In particular I would not want to use a

Farfalle construction. But since expanding A is called on fixed-size
objects, it's possible that it would not go beyond sponge mode even if

TurboSHAKE can do this in general.

To help weigh this, do you have a profile for what fraction of Kyber's

(or Dilithium'’s) runtime is specifically the generation of A?

That's highly platform dependent. I just ran some benchmarks on a

Haswell machine for the AVX2-optimized implementation. What I'm getting

Page 3 of 7

dustin...@nist.gov <dustin.moody@nist.gov>

keygen: 25120
encaps: 39180
decaps: 30868
gen_A: 7472
xof: 6088

keygen: 43596
encaps: 59464
decaps: 47684
gen_A: 20320
xof: 16865

keygen: 60396
encaps: 83576
decaps: 67656
gen_A: 29664
xof: 24109

Here, "gen_A" is the full cycles for generation of the matrix A,
including the cycles for rejection sampling; "xof" is the cycles used on
SHAKE-128, i.e., the cycles that would pretty exactly halve when moving

to TurboSHAKE.

Note that in this implementation, the generation of A is using a fast
vectorized implementation of Keccak (vectorizing across different matrix
entries), while many other calls to Keccak are sequential and thus much
slower. On embedded platforms like the M4 I would expect the relative
cost for "xof" to be considerably higher, simply because there is no

speedup from vectorization. I can run those benchmarks when I'm back

Page 4 of 7

dustin...@nist.gov <dustin.moody@nist.gov>

from my travels.

On the other hand, in a masked implementation I would expect the
relative cost of "xof" to be much lower, simply because we don't require

masking in the generation of A, but we do for most other Keccak calls.

With HW acceleration of Keccak it's somewhat hard to predict and it will
depend a lot on how large the acceleration is: on the one hand, all

Keccak calls will likely have the same cost (so matrix generation will

be relatively more costly compared to other Keccak calls than in the

AVX2 implementation), but on the other hand, one would expect polynomial
arithmetic to use a more significant portion of the cycles, so overall

the cost for Keccak permutations might not matter all that much.

Does this help?

All the best,

Peter

Hi Peter, thanks for this data.

It looks like the savings in the cases above, for a full key exchange assuming
that decaps regenerates A, are about 10%, 17% and 17% for the three security
levels. That's not nothing, but it's not a huge amount either. Also, in terms of
absolute time savings on eg 3 GHz Haswell, even for Kyber 1024 we're looking
at about 12ps savings for the entire key exchange. I'm not convinced that's worth
the change, even though it's cryptographically fine.

Maybe on the M4 it will be relevant, though again I'm not sure many M4-class
devices will be doing key exchanges that a human or time-relevant process will
wait for.

| agree that in hardware, switching to TurboSHAKE won't typically save as much

Page 5 of 7

dustin...@nist.gov <dustin.moody@nist.gov>

because, at least if Keccak is implemented in the most common one-cycle-per-
round configuration, it won't be the bottleneck unless the NTT unit is very large.
In fact, the savings might be almost zero if the XOF and NTT operate in parallel.
TurboSHAKE will also be annoying for hardware designers, because (speaking
as a hardware designer) we will need to alter our accelerators to support it but
as far as | can tell it isn't spec’d yet. Since hardware has a long development
cycle, this will mean adding a bunch of extra knobs to the Keccak accelerator
and hoping we picked the right ones.

Overall, I'm not in favor of this change but | don't think it will be a disaster either.
There will be less risk for hardware projects if you can specify what TurboSHAKE
will look like, possibly even before deciding whether to use it.

Regards,

— Mike

You received this message because you are subscribed to the Google Groups "pgc-forum"
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-
forum+unsubscribe@list.nist.gov.

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/
pgc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org.

You received this message because you are subscribed to the Google Groups "pgc-forum”
group.

To unsubscribe from this group and stop receiving emails from it, send an email to pgc-
forum+unsubscribe@list.nist.gov.

Page 6 of 7

mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/D58209AC-08F2-4854-813D-06FB0875C2F4%40shiftleft.org?utm_medium=email&utm_source=footer
mailto:pqc-forum+unsubscribe@list.nist.gov
mailto:pqc-forum+unsubscribe@list.nist.gov

dustin...@nist.gov <dustin.moody@nist.gov>

To view this discussion on the web visit https://groups.google.com/a/list.nist.gov/d/msgid/pgc-
forum/c2c3ddca-6286-43c0-9f97-82526a4fcf24n%40list.nist.gov.

Page 7 of 7

https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/c2c3ddca-6286-43c0-9f97-82526a4fcf24n%40list.nist.gov?utm_medium=email&utm_source=footer
https://groups.google.com/a/list.nist.gov/d/msgid/pqc-forum/c2c3ddca-6286-43c0-9f97-82526a4fcf24n%40list.nist.gov?utm_medium=email&utm_source=footer

	1. 2022-12-03 20:04- Peter Schwabe
	2. 2022-12-04 08:18- John Mattsson
	3. 2022-12-04 09:46- Blumenthal, Uri - 0553 - MITLL
	4. 2022-12-04 13:14- Simon Hoerder
	5. 2022-12-04 20:39- Peter Schwabe
	6. 2022-12-04 22:04- Markku-Juhani O. Saarinen
	7. 2022-12-05 08:00- Mike Hamburg
	8. 2022-12-05 12:57- peter...@gmail.com
	9. 2022-12-09 07:15- Peter Schwabe
	10. 2022-12-09 09:53- Mike Hamburg
	11. 2022-12-09 10:47- Stott, David - 0553 - MITLL
	12. 2023-01-24 12:15- dustin...@nist.gov

